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1 Introduction

Mixing phenomena in neutral B meson systems provide an important testing ground for
standard model avordynamics. The mass di�erence between the Bd eigenstates, �MBd

, gave
the �rst evidence for a large top quark mass and provides a valuable constraint on jVtdj and
the CKM unitarity triangle. A direct measurement of �MBs

, the corresponding quantity for
Bs mesons, through Bs- �Bs oscillations, would yield further information and help to reduce
hadronic uncertainties in the extraction of CKM parameters. Complementary insight can be
gained from the width di�erence ��Bs

between the Bs mass eigenstates [1, 2]. This width
di�erence is expected to be the largest among bottom hadrons [3], and it may be large enough
to be accessible by experiment in the near future. The width di�erence for Bd mesons, on the
other hand, is CKM suppressed and experimentally much harder to determine.

If ��Bs is indeed found to be sizable, the observation of CP violation and the extraction
of CKM phases from untagged Bs data samples can be contemplated [1, 4, 5]. This possibility
could be important in two respects. First, tagging any Bs data sample costs in statistics and
in purity. Second, the rapid oscillations dependent on �MBst all cancel in time evolutions
of untagged Bs data samples, which are governed by the two exponentials exp(��Lt) and
exp(��Ht) alone.

The present article continues previous work of one of us [1] on the phenomenological
potential of ��Bs, and focuses on theoretical uncertainties and improvements of the prediction.
We compute the width di�erence in the heavy quark expansion and include explicit 1=mb-
corrections, which improves over previous estimates of ��Bs based on a partonic [6, 7, 8, 9, 10]
or exclusive [11] approach and allows us to assess the remaining uncertainties more reliably.
Combined with future measurements of ��Bs these predictions can be used to derive indirect
constraints on jVts=Vtdj [2] and �MBs. Non-standard model sources of CP violation in the
Bs system would reduce ��Bs compared to its standard model value, as explained in [12], so
that a lower bound on the standard model prediction is especially interesting.

Starting from the avor eigenstates fjBsi; j �Bsig, Bs� �Bs mixing is determined by the 2�2
matrix

M = M� i

2
�: (1)

with hermitian M and �. Due to CPT conservation M11 = M22 � MBs, �11 = �22 � �Bs.
We recall that for the Bs system the o�-diagonal elements obey the pattern

���� �12

M12

���� � O
 
m2

b

m2
t

!
: (2)

The mass and lifetime di�erence between eigenstates are given by (`H' for `heavy', `L' for
`light')

�MBs
�MH �ML = 2 jM12j; (3)

��Bs � �L � �H = �2 Re (M�
12�12)

jM12j : (4)
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The corrections to (3) and (4) are extremely suppressed. They enter only at order j�12=M12j2
and vanish altogether in the limit of exact CP symmetry. Anticipating the actual hierarchy
of eigenvalues, we have de�ned both �MBs

and ��Bs
to be positive quantities.

Neglecting CP violating corrections, which are very small in the standard model (SM), the
mass eigenstates are CP eigenstates (up to corrections of at most 10�3), and with the phase
convention CP jBsi = �j �Bsi one has jBH=Li = (jBsi�j �Bsi)=

p
2. Theny, using standard CKM

phase conventions [13],

��Bs
= �2 �12 = �2 �21: (5)

Note that the lighter state is CP even [1] and decays more rapidly than the heavier state. This
also follows from the fact that most of the decay products in the b! c�cs transition which are
common to Bs and �Bs are CP even [11].

Both the mass and lifetime di�erence are determined by the familiar box diagrams that give
rise to an e�ective �B = 2 Hamiltonian (`B' denotes b-quark number). On distance scales
larger than 1=MW , but still smaller than 1=mb, this e�ective Hamiltonian contains a local
�B = 2 interaction as well as a bilocal part constructed from two (local) �B = 1 transitions.
The mass di�erence is given by the real part of the box diagram and is dominated by the top
quark contribution. For this reason, M12 is generated by an interaction that is local already
on scales x > 1=MW and theoretically well under control. The short-distance contribution
has been calculated to next-to-leading order in QCD [14]. The long-distance contribution is
parametrized by the matrix element of a single four-quark operator between Bs and �Bs states.
Corrections to this result are suppressed by powers of m2

b=M
2
W and completely irrelevant for

all practical purposes.
The lifetime di�erence is given by the imaginary part of the box diagram and determined

by real intermediate states, which correspond to common decay products of Bs and �Bs, so that
only the bilocal part of the �B = 2 Hamiltonian can contribute. The presence of long-lived
(on hadronic scales) intermediate states would normally preclude a short-distance treatment
of the lifetime di�erence as indeed it does for neutral kaons. But for bottom mesons, the
b quark mass mb provides an additional short-distance scale that leads to a large energy
release (compared to �QCD) into the intermediate states. Thus, at typical hadronic distances
x > 1=mb, the decay is again a local process. The bilocal �B = 2 Hamiltonian can be
expanded in inverse powers of the heavy quark mass, schematically:

Im i
Z
d4xT

�
O�B=1(x)O�B=1(0)

�
=
X
n

Cn

mn
b

O�B=2
n (0) (6)

The matrix elements of local �B = 2 operators that appear here and in the mass di�erence
are not independent of mb. Their mass dependence could be made explicit with the help of
Heavy Quark E�ective Theory. The di�erence between the mass and lifetime di�erence is that
for the lifetime di�erence explicit 1=mb corrections arise from the expansion (6) even before
expanding the matrix elements of local operators. The heavy quark expansion applies as well

y Subsequently, we present the result of our calculation of �21 as a result for ��Bs
using (5). If one

does not want to assume standard model CP violation, (5) must be generalized to (4), but our result for �21
is still valid, provided non-standard model CP violation modi�es only M12, but not �12. Since �12 results
predominantly from tree decays, this is reasonable to assume.
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to the diagonal elements �ii � �Bs
� (�H + �L)=2 and has been used to predict the total

width of bottom hadrons [3]. A contribution to �12 requires that the spectator strange quark
and the bottom quark come together within a distance 1=mb in a meson of size 1=�QCD. This
volume suppression together with the phase space enhancement, leads to the estimate

�����12

�11

���� � 16�2
�

�QCD

mb

�3
: (7)

The application of heavy quark expansions to non-leptonic decays assumes local duality. The
accuracy of this assumption can not be quanti�ed within the framework itself, at least not
to �nite order in the heavy quark expansion. The assumption that the sum over exclusive
modes is accurately described by the heavy quark expansion might be especially troubling
for ��Bs

, since it is saturated by only a few D(�;��)
s

�D(�;��)
s intermediate states and the energy

release is only slightly larger than one GeV. On the other hand, in the small-velocity limit
�QCD � mb� 2mc � mc, and the Nc !1-limitz, local duality with only a few intermediate
states can indeed be veri�ed explicitly [11].

This article starts from the hypothesis that duality violations should be less than 10% for
��Bs. Aiming at an accuracy of 10%, the following corrections to the leading order result
have to be considered:

(i) 1=mb corrections from dimension seven operators in (6).

(ii) Deviations from the `vacuum insertion' (`factorization') assumption for matrix elements
of four-fermion operators.

(iii) Radiative corrections of order �s=�.

(iv) Penguin and Cabibbo-suppressed contributions.

The major part of this paper is devoted to 1=mb corrections. We hope to return to radiative
corrections in a subsequent publication. These would bring the short-distance part of the
calculation for ��Bs on the same level that has already been achieved for �MBs. The result
for ��Bs to next-to-leading order in the 1=mb expansion is obtained in Sect. 2. We use the
vacuum insertion approximation for the dimension seven operators, and express the result in
terms of two non-perturbative parameters that have to be computed with lattice methods.
Sect. 3 is devoted to the phenomenology of ��Bs. Numerical results are discussed in Sect. 3.1,
together with the theoretical uncertainties in ��Bs=�Bs. In Sect. 3.2 a generally valid upper
bound on ��Bs is derived. Sect. 3.3 describes potential strategies to measure the width
di�erence in experiment. Some phenomenological applications of such a measurement are
considered in Sect. 3.4.

An issue related to ��Bs concerns the total decay rate �Bs of Bs mesons, averaged over the
long-lived and short-lived component. For experimental investigations of ��Bs [1] it would be
helpful to know to what extent the average Bs decay rate �Bs di�ers from �Bd

. These decay
widths are estimated to coincide to a high accuracy [3]. We quantify this expectation and
detail the contributions that could give rise to a di�erence between �Bs and �Bd

in Sect. 4. A

z This limit is necessary to justify the factorization assumption for four-fermion operators.
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Figure 1: Diagram that gives the leading and next-to-leading in 1=mb terms in the heavy
quark expansion of the forward scattering amplitude.

summary is presented in Sect. 5. Penguin and Cabibbo-suppressed contributions turn out to
shift ��Bs by less then 10% and are discussed in the Appendices, along with a comment on
the lifetime ratio of B+ to Bd mesons.

2 ��Bs { Basic Formalism

The optical theorem relates the total decay width of a particle to its forward scattering
amplitude. The o�-diagonal element �21 of the decay width matrix is given by

�21 =
1

2MBs

h �BsjT jBsi: (8)

The normalization of states is hBsjBsi = 2EV (conventional relativistic normalization) and
the transition operator T is de�ned by

T = Im i
Z
d4x T Heff (x)Heff(0): (9)

Here Heff is the low energy e�ective weak Hamiltonian mediating bottom quark decay. The
component that is relevant for �21 reads explicitly

Heff =
GFp

2
V �
cbVcs

�
C1(�)(�bicj)V�A(�cjsi)V�A + C2(�)(�bici)V�A(�cjsj)V�A

�
; (10)

where we are neglecting Cabibbo suppressed channels and the contributions from penguin
operators, whose coe�cients are small numerically. These contributions will be considered
in the Appendices. We use the notation (�q1q2)V�A = �q1�(1 � 5)q2 and similar notation for
other combinations of Dirac matrices. The indices i; j refer to color. The Wilson coe�cient
functions C1;2 read in the leading logarithmic approximation

C2;1 =
C+ � C�

2
C+(�) =

"
�s(MW )

�s(�)

#6=23
C�(�) =

"
�s(MW )

�s(�)

#�12=23
(11)

with scale � of order mb.
The leading contribution to the �B = 2 transition operator is shown in Fig. 1, where

the vertices correspond to the interaction terms in (10). The operator product expansion is
constructed using standard methods [3]. Because of the large momentum owing through the
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fermion loop, it can be contracted to a point. To leading order in 1=mb, the strange momentum
can be neglected and the b quark momentum identi�ed with the meson momentum. The result
can be expressed in terms of two dimension six operators

Q = (�bisi)V�A(�bjsj)V�A (12)

QS = (�bisi)S�P (�bjsj)S�P : (13)

The �rst operator coincides with the single operator that contributes to the mass di�erence.
The appearance of a second operator can be traced to the fact that in the calculation of �21

the external b momentum can not be neglected, because its zero component (in the meson
rest frame) provides the large momentum scale.

To include 1=mb corrections, the forward scattering amplitude, evaluated between on-shell
quark states, is expanded in the small strange quark momentum and matched onto operators
with derivatives or with a factor of ms, the strange quark mass, which we count as �QCD.
Operators with additional gluon �elds contribute only to corrections of order (�QCD=mb)2

and need not be considered. It is more direct (and rather trivial at this order) to use the
background �eld method [15]. Since we do not scale out the `kinematic' part of order mb in
derivatives acting on b �elds, we do not have immediate power counting. Some operators of
higher dimension in (6) have to be kept, if they contain derivatives on b �elds, such as R2

below. Using the equations of motion, we are left with operators with at most one derivative
on b �elds and obtain

�21 = � G2
Fm

2
b

12�(2MBs)
(V �

cbVcs)
2
p

1� 4z �

�
��

(1� z)K1 +
1

2
(1� 4z)K2

�
hQi + (1 + 2z) (K1 �K2) hQSi + �̂1=m

�
; (14)

where z = m2
c=m

2
b and

K1 = NcC
2
1 + 2C1C2 K2 = C2

2 : (15)

The brackets denote the matrix element of an operator O between a �Bs and Bs state, hOi �
h �BsjOjBsi. The 1=mb corrections are summarized in

�̂1=m = (1 + 2z)
h
K1 (�2hR1i � 2hR2i) +K2 (hR0i � 2h ~R1i � 2h ~R2i)

i

� 12z2

1 � 4z

h
K1 (hR2i + 2hR3i) +K2 (h ~R2i+ 2h ~R3i)

i
: (16)

The subdominant operators are denoted by Ri and ~Ri and read (R4 will be needed below)

R0 = QS + ~QS +
1

2
Q ~QS = (�bisj)S�P (�bjsi)S�P (17)

R1 =
ms

mb

(�bisi)S�P (�bjsj)S+P (18)
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R2 =
1

m2
b

(�bi
 �
D�

�(1� 5)D�si)(�bj�(1� 5)sj) (19)

R3 =
1

m2
b

(�bi
 �
D�(1 � 5)D�si)(�bj(1� 5)sj) (20)

R4 =
1

mb
(�bi(1 � 5)iD�si)(�bj

�(1 � 5)sj): (21)

The ~Ri denote the color-rearranged operators that follow from the expressions for Ri by
interchanging si and sj . In deriving (14) we omitted total derivative terms, because four-
momentum is conserved in the forward scattering amplitude.

The operators Ri and ~Ri are not all independent at order 1=mb. Relations can be derived
by using the equations of motion and omitting total derivatives. To reduce R0, one can start
from the Fierz identity

(�bi�(1� 5)si)(�bj�(1� 5)sj) = (22)

�(�bi�(1� 5)sj)(�bj�(1 � 5)si) +
1

2
g�� (�bi

�(1� 5)sj)(�bj�(1 � 5)si)

and apply derivatives in an appropriate way. Up to corrections of 1=mb (or less), we �nd

R0 = 2 ~R1 �R2 + 2R4

~R0 = R0

~R2 = �R2 (23)

~R3 = R3 +R2=2

~R4 = R4 + ~R1 �R1 �R2:

The �rst of these relations shows explicitly that the matrix element of R0 is 1=mb suppressed
compared to Q, which is not directly evident from its de�nition above.

At this point, we have expressed the 1=mb corrections to ��Bs in terms of �ve new unknown
parameters, in addition to the two non-perturbative parameters that appear already at leading
order, and which also contain implicit 1=mb corrections. In principle they can all be obtained
within the framework of lattice gauge theoryx. Unfortunately, results accurate to 10% are
not yet available, especially not for hQSi (and all the subleading operators). We therefore
adopt the following strategy: we parametrize the two operators that appear at leading order.
They can be estimated in vacuum insertion or the large Nc limit, but should ultimately be
computed on the lattice. The operators Ri, ~Ri, on the other hand, are only of subleading
importance and we shall content ourselves here with the factorization approximation.

Following standard conventions we express the matrix elements of Q and QS in terms of
the corresponding `bag' parameters B and BS

x The matrix elements of the subleading operators could be evaluated in the static limit. However, to
consistently include all 1=mb corrections, hQi and hQSi must be computed either in full QCD or in Heavy Quark
E�ective Theory including 1=mb corrections to the Lagrangian as well as to the e�ective theory operators.
The parametrization of 1=mb corrections to hQi has been analyzed in [16].
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hQi = f2Bs
M2

Bs
2
�

1 +
1

Nc

�
B; (24)

hQSi = �f2Bs
M2

Bs

M2
Bs

(mb +ms)2

�
2 � 1

Nc

�
BS; (25)

where MBs
and fBs

are the mass and decay constant of the Bs meson and Nc is the number of
colors. The parametersB and BS are de�ned such that B = BS = 1 corresponds to the factor-
ization (or `vacuum insertion') approach, which can provide a �rst estimate. Factorization of
four-fermion operators is a controlled approximation only for large Nc or for a non-relativistic
system. In the large Nc limit, B = 3=4 and BS = 6=5. In the sense of these limiting cases,
factorization for realistic Bs mesons can be expected to yield the correct order of magnitude
and, in particular, the right sign of these matrix elements. Existing nonperturbative calcu-
lations like lattice simulations for hQi, and for its counterpart in the K � �K system, are in
agreement with this expectation. Beyond these limits factorization does not reproduce the
correct renormalization scale and scheme dependence, necessary to cancel the corresponding,
unphysical dependences in the Wilson coe�cients. This raises the additional question, to
which we return below, at what scale factorization should be employed to estimate the matrix
elements. Without further information a certain variation of the parameters B, BS should be
allowed in performing a numerical analysis.

Next we consider the subleading operators Ri, ~Ri, where we apply factorization. Using
relations such as (�; � refers to spinor indices, i; j to color as before)

h �Bsj�b�i �D�D
�s�jj0i =

1

2
(m2

b �M2
Bs

) h �Bsj�b�is�jj0i; (26)

valid to �rst order in 1=mb, all matrix elements can be expressed in terms of fBs, MBs and
quark masses. We �nd

hR0i = f2Bs
M2

Bs

�
1 +

1

Nc

� 
1 � M2

Bs

(mb +ms)2

!

hR1i = f2Bs
M2

Bs

ms

mb

�
2 +

1

Nc

�

h ~R1i = f2Bs
M2

Bs

ms

mb

�
1 +

2

Nc

�

hR2i = f2Bs
M2

Bs

 
M2

Bs

m2
b

� 1

!�
�1 +

1

Nc

�
(27)

h ~R2i = f2Bs
M2

Bs

 
M2

Bs

m2
b

� 1

!�
1� 1

Nc

�

hR3i = f2Bs
M2

Bs

 
M2

Bs

m2
b

� 1

!�
1 +

1

2Nc

�

h ~R3i = f2Bs
M2

Bs

 
M2

Bs

m2
b

� 1

!�
1

2
+

1

Nc

�
:
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Combining the above results, one can obtain ��Bs
from (14). The sensitivity to Vcb may

be eliminated by normalizing to the total decay rate �Bs
expressed in terms of the semileptonic

width and branching ratio

�Bs
=

�(Bs ! Xe�)

B(Bs ! Xe�)
=
G2
Fm

5
b

192�3
jVcbj2 g(z) ~�QCD

B(Bs ! Xe�)
; (28)

g(z) = 1 � 8z + 8z3 � z4 � 12z2 ln z; (29)

where B(Bs ! Xe�) is to be taken from experiment{ and z = m2
c=m

2
b as before. ~�QCD denotes

the one-loop QCD corrections (mb refers to the b-quark pole mass). Their analytic expression
can be found in [17]. At mb = 4:8 GeV, mc = 1:4 GeV, � = mb, and with �s(mb) = 0:216
one has ~�QCD = 0:88. Since radiative corrections to ��Bs

are not yet known, the inclusion
of radiative corrections to the semileptonic width seems somewhat arbitrary. On the other
hand, with Vcb = 0:04 and ��1

Bs
= 1:54 ps, one obtains mb � 4:8 GeV from (28), compared to

mb � 4:5 GeV without QCD corrections. We prefer the �rst value as our central choice for mb

in the numerical analysis, but repeat that, in the absence of radiative corrections to ��Bs,
~�QCD can as well be considered as a normalization uncertainty that replaces the normalization
uncertainty due to the errors in Vcb and �Bs. Finally one arrives at the following expression:

��Bs

�Bs

= 16�2B(Bs ! Xe�)

p
1 � 4z

g(z) ~�QCD

f2Bs
MBs

m3
b

V 2
cs �

�
"

(2(1 � z)K1 + (1� 4z)K2)
�

1 +
1

Nc

�
B (30)

+ (1 + 2z) (K2 �K1)
M2

Bs

(mb +ms)2

�
2 � 1

Nc

�
BS + �1=m + �rem

#
:

�1=m is related to �̂1=m, de�ned in (16), through

�̂1=m = f2Bs
M2

Bs
�1=m; (31)

and from now on we imply that (27) is used. We have indicated by �rem the contributions from
CKM-suppressed intermediate states (u�c; �uc; u�u) and from penguin operators in the �B = 1
e�ective Hamiltonian, which are estimated in the Appendices A and B to be below �3% and
about �5%, respectively, relative to the leading order contribution. We shall neglect �rem in
the analysis to follow.

Since fBs � �3=2
QCD=m

1=2
b , ��Bs=�Bs � 16�2(�QCD=mb)3 as in the estimate (7). Eq. (30) is

valid to leading (O(1=m3
b )) and next-to-leading order (O(1=m4

b)) in the heavy quark expansion.
The most important neglected terms are radiative corrections of order O(�s=m3

b). Implicit
here is the assumption that the quantity (��=�)Bs can indeed be represented to reasonable
accuracy by the series in powers of �QCD=mb that is generated by the heavy quark expansion.
As mentioned earlier, this assumption is equivalent to the assumption of local quark hadron
duality.

{ Since we show in Sect. 4 that the lifetime di�erence between Bs and Bd is tiny, no attention has to be
paid to the avor content of the B meson.
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The leading term in (30), represented by the contributions proportional to B and BS,
agrees with the results that have been given previously in the literaturek [6, 7, 8, 9, 10]. Note
that we have consistently kept the distinction between quark masses, arising from the short-
distance loops or the equations of motion, and the meson mass MBs from hadronic matrix
elements, since we are aiming at e�ects beyond leading order in the heavy quark expansion.

In (30), K1;K2 and B;BS should be evaluated at a scale of order mb. If we wanted to
use vacuum insertion to estimate the bag factors, it is physically clear, especially in the heavy
quark limit mb ! 1, that vacuum insertion should be applied not at the scale mb, but at
a typical hadronic scale �h � 1 GeV. This still leaves us with an ambiguity as to the choice
of �h and in addition with the question, how B(�h) = BS(�h) = 1 are related to B(mb)
and BS(mb). This latter question can be answered in the limit �h � mb and corresponds to
the inclusion of `hybrid logarithms' [18, 19], as done in [10]. The evolution from mb to �h is
performed in the leading logarithmic approximation in the static theory and leads to��

B(mb) = 1 (32)

BS(mb) = 1 � 3

5

0
@1�

"
�s(mb)

�s(�h)

#8=251A :
The �rst equation in (32) reects the well-known result that the matrix element of the operator
Q has the same leading logarithmic corrections in the static theory (HQET) as the square of
the decay constant, f2Bs

. Taking �h = 0:5; 1; 2 GeV results in BS(mb) = 0:80; 0:88; 0:94. (The
scale �h = 0:5 GeV might already be too low for a perturbative evolution.)

The b-quark mass mb � 4:8 GeV is probably not large enough to make this estimate real-
istic, even if factorization held at the scale �h. The logarithm lnmb=�h is not very large, so
that other contributions like non-logarithmic O(�s) terms which are omitted in (32), can be
expected to be numerically of the same order as the hybrid logarithms that are retained, espe-
cially since summing hybrid logarithms amounts to a moderate 10% e�ect (with �h = 1 GeV).
The one-loop matching of Q on its counterpart(s) in Heavy Quark E�ective Theory indeed
exhibits sizeable cancellations between logarithms and constants, at least in the particular
matching scheme considered in [20]. Furthermore, the QCD renormalization between mb and
�h in (32) is only valid at leading order in HQET and neglects 1=mb corrections in the matrix
elements, which is not consistent with our keeping of explicit 1=mb corrections. On the other
hand the B factors are in principle calculable in full QCD. In this case they will automatically
include 1=mb corrections as well as the hybrid logarithms, among further important contri-
butions. For these reasons we prefer to keep the expression for (��=�)Bs in the form given
in (30) and do not include hybrid renormalization explicitly, with the understanding that the
bag factors will eventually be available from lattice QCD. In our numerical analysis, we take
the conservative, but perhaps too agnostic attitude that BS(mb) could take any value between
0:7 and 1:3, keeping in mind (32) as a particular model estimate of B and BS. The upper end
of this range is motivated by the Nc !1 limit, in which BS = 6=5.

k Often factorization is assumed for the leading order term, so that B and BS have to be set to unity to
recover the result.

�� We have checked the calculation of hybrid logarithms and agree with the �ndings of [10].
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mb=GeV � a b c (��=�)Bs

4:8 mb 0:009 0:211 �0:065 0:155

4:6 mb 0:015 0:239 �0:096 0:158

5:0 mb 0:004 0:187 �0:039 0:151

4:8 2mb 0:017 0:181 �0:058 0:140

4:8 mb=2 0:006 0:251 �0:076 0:181

Table 1: Dependence of a, b and c on the b-quark mass and renormalization scale for �xed
values of all other short-distance parameters. The last column gives (��=�)Bs

for B = BS = 1
(at the given scale �), fBs = 210 MeV.

3 ��Bs { Phenomenology

3.1 Numerical Analysis of (��=�)Bs

We �rst turn to a numerical analysis and discussion of (��=�)Bs based on (30). It is useful to
separate the dependence on the long-distance parameters fBs, B and BS and write (��=�)Bs

as

�
��

�

�
Bs

=
h
aB + bBS + c

i  fBs

210 MeV

!2
; (33)

where c incorporates the explicit 1=mb corrections. To estimate the sensitivity of (��=�)Bs

on the short-distance input parameters, we keep the following parameters �xed: mb �mc =
3:4 GeV, ms = 200 MeV, �

(5)
LO = 200 MeV. In addition MBs = 5:37 GeV and the semileptonic

branching ratio is B(Bs ! Xe�) = 10:4%. Then a, b and c depend only on mb and the
renormalization scale �. For some values of mb and �, the coe�cients a, b, c are listed in
Table 1. For a central choice of parameters, which we take as mb = 4:8 GeV, � = mb,
B = BS = 1 and fBs = 210 MeV, we obtain

�
��

�

�
Bs

= 0:220 � 0:065 = 0:155; (34)

where the leading term and the 1=mb correction are separately displayed. As seen from
the Table, the dependence on mb is weak, but (��=�)Bs increases by almost 20% when
the renormalization scale is lowered to mb=2, at �xed B and BS. These dependences are
not speci�c to the values B = BS = 1. The weak mb dependence is a somewhat accidental
consequence of using the semileptonic branching ratio to eliminate Vcb. If instead we normalize
to ��1

Bs
= 1:54 ps and take Vcb = 0:04, (��=�)Bs would vary from 0:143 to 0:166 under the

same variation of mb as in the Table. Let us also add the following more general observations:
(i) The theoretical expression for ��Bs in (30) predicts the sign of this quantity, which a

priori could have either value. ��Bs is positive and implies a larger decay rate for the CP even
(lighter) state [10, 11] (see the conventions in the Introduction). The typical magnitude of
(��=�)Bs to leading order in the heavy quark expansion is about 0.2, larger than other width
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di�erences among bottom hadrons with the possible exception of the case of �b (depending
on whether theory or present experiments turn out to be right on �b).

(ii) The explicit 1=mb corrections are numerically important and vary strongly with mb.
For our central parameter choice they reduce the leading order prediction by about 30%.
Essentially all the various 1=mb correction terms add with the same sign and make the result
somewhat larger than the natural size of the corrections, �QCD=mb � (MBs

�mb�ms)=mb �
8% and ms=mb � 4%.

(iii) The contribution from the scalar operator QS by far dominates over the contribution
from Q, because there is a strong cancellation between terms of di�erent sign in the Wilson
coe�cient of the latter operator. This has important implications for (�M=��)Bs, which we
discuss below, because hadronic uncertainties cancel only partially in the ratio B=BS .

(iv) If BS = 1:3, a (��=�)Bs
of as much as 0:25 is not excluded, although this appears

unlikely. On the other hand, if BS < 1, as suggested by the estimate from hybrid logarithms,
and if fBs turns out to be merely 180 MeV, (��=�)Bs could be as small as 0:07, making its
experimental detection more di�cult.

This discussion shows that to resolve the theoretical uncertainties, a reliable calculation of
BS is mandatory. Further improvement then requires a full next-to-leading order calculation
of short-distance corrections.

3.2 Upper Limit on ��Bs

Since the b ! c�cs transition is the dominant contributor to (��)Bs, one obtains the upper
bound [1, 21]

 j��j
�

!
Bs

� 2 B(b! c�cs)Bs : (35)

It can be readily understood by considering the limit in which only b! c�cs transitions were
generated by the e�ective Hamiltonian. Eq. (35) then follows from the requirement that the
decay rates be non-negative, �� = �(b! c�cs)���=2 � 0. B(b! c�cs)Bs denotes the fraction
of Bs-meson decays governed by the b! c�cs transitions in the absence of mixing. CLEO [22]
recently con�rmed our prediction [23] of a signi�cant `wrong' charm yield in B decays, thereby
completing the �rst direct measurement of

B(b! c�cs0) � B(b! �c) = 0:227 � 0:035; (36)

where B(b ! �c) is the average number of �c produced per b decay. The Cabibbo allowed
transition is

B(b! c�cs) = jVcsj2 B(b! c�cs0) = 0:22 � 0:03; (37)

Assuming B(b! c�cs)Bs � B(b! c�cs) then yields the upper limit

 j��j
�

!
Bs

� 0:44 � 0:06 : (38)

Within the heavy quark expansion, (j��j)=�)Bs is suppressed by m�3
b relative to spectator

branching ratios, such as B(b! c�cs). From this point of view a bound like (35) might appear
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trivial. However, the virtue of relation (35) is its very general validity. It would hold even if
a heavy quark expansion were not applicable to the underlying process.

3.3 Measuring ��Bs

We hope to have convinced the reader about the importance of an accurate measurement of
��. One method is to substitute �Bd

for the average Bs width �Bs
and to extract ��Bs

from
the time-dependences of untagged avor speci�c Bs data samples [1]. Time-dependent studies

of angular distributions of untagged
(�)

B s! J= � decays allow the extraction of �L, and also of
�H if the CP-odd component is non-negligible [5, 24]. These and other methods using decay
length distributions of fully reconstructed Bs mesons are at present statistics limited [1, 5, 24].

As an illustration one may consider the measurement of

� (Bs ! J= �) = 1:34+0:23�0:19 � 0:05 ps (39)

recently obtained by the CDF collaboration from a single lifetime �t of their
(�)

B s! J= � data
sample [25]. Next we can write

1=�L � � (Bs ! J= �); (40)

which holds only as an inequality, because Bs ! J= � is not necessarily a pure CP-even �nal
state. The world average Bd lifetime [26]

�Bd
= 1:54 � 0:04 ps (41)

together with the result of section 4, informs us about the inverse of the average Bs width
1=�Bs = �Bd

. We then use

��

�
= 2

�
�L

�
� 1

�
(42)

and obtain

�
��

�

�
Bs

� 0:3� 0:4; (43)

which is still inconclusive, but can serve to indicate the present status.
Just establishing a non-vanishing di�erence in decay length distributions for partially re-

constructed Bs mesons in comparison to the other B mesons would constitute progress. The
ideal inclusive b-hadron data sample should have large statistics and be highly enriched in Bs

decay products originating predominanty from a single mass eigenstate BL (or BH). The last
requirement maximizes di�erentiation between Bs and other B-mesons. The ��X �nal state
serves as an example [27]. The probable decay chain is Bs ! D+

s D
�
s X; which is dominantly

CP even [11]. Both Ds's then decay into �'s. While Ds is seen signi�cantly in �'s, the D+ is
seen in �'s by about a factor of 10 less and the D0 even less than that [28]. The background
due to B-meson decays is thus controllable and further suppressed because B's prefer to be
seen as D0 over D+ by a ratio of 2.7 [29]. If su�cient statistics is available, the D�

s �X sample
would be even better.
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The inclusive Bs ! �`+X sample with a high PT;re` lepton, is avor speci�c. Its time
dependence is governed by the sum of two exponentials, exp (��Lt) + exp (��Ht). Theory
predicts (�L+�H)=2 = 1=�Bd

, but the observation of the two exponents requires precise decay
length and boost information, whose accuracy increases the more fully the Bs is reconstructed.

The less reconstructed the Bs data sample, the more important it is to have a mono-
energetic source of Bs mesons. Thus the more inclusive techniques tend to be more useful for
e+e� ! Z0 experiments than at hadron accelerators. Of course, fully reconstructed Bs data
samples allow clean measurements of ��Bs.

3.4 Bs � �Bs Mixing and CKM Elements

The traditional methods for observation of CP violation and the extraction of CKM phases
require to resolve the rapid �MBs

t oscillations of tagged Bs data samples [30]. Current
vertexing technology allows to resolve such oscillations for �MBs �< 10 ps�1. Thus the recent
lower limit from the ALEPH collaboration [31]

�MBs > 6:6 ps�1 (95% C.L.) (44)

is signi�cant. It may indicate the need to develop new methods capable of higher resolving
power. Reliable predictions of �MBs are therefore important in order to plan future Bs

experiments, in particular if only lower limits will be available with current vertex techniques.
The most straightforward method makes use of [32]

�MBs =
G2
F M

2
W

6�2
�B S0(xt)MBsBBsf

2
Bs
jVtsj2; (45)

where xt = m2
t=M

2
W . The current relative uncertainty is about 50% and is dominated by the

uncertainty in BBs (�30%), f2Bs
(�40%), jVtsj2 (�15%) and S0(xt) (�8%). The fractional

uncertainty on �MBs can be expected to decrease to � 15% by the year 2002, anticipating
improvements in the accuracy of the relevant parameters BBs (�10%), f2Bs

(�5%), jVtsj2
(�5%) and S0(xt) (�3%).

A variant of this method uses the experimental value for �MBd
and the ratio

(�M)Bs

(�M)Bd

=
MBs

MBd

BBs f
2
Bs

BBd
f2Bd

����VtsVtd
����
2

(46)

to predict �MBs. This approach will be useful only if the CKM ratio jVts=Vtdj2 is accurately
known.

If the �rst observation of Bs� �Bs mixing is a nonvanishing ��Bs rather than �MBs, then
a complementary method to predict �MBs opens up, based on the quantity (see (30))

�
��

�M

�
Bs

=
�

2

m2
b

M2
W

����VcbVcsVtsVtb

����
2
p

1 � 4z

�BS0(xt)
�

�
"

(2(1 � z)K1 + (1� 4z)K2)
�

1 +
1

Nc

�
(47)

+ (1 + 2z) (K2 �K1)
M2

Bs

(mb +ms)2

�
2� 1

Nc

�
BS

B
+ �1=m

#
:
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This result is valid to next-to-leading order in the 1=mb expansion and to leading logarithmic
accuracy in QCD. We have again used factorization for the subleading 1=mb corrections. Note
that with the bag parameter B as de�ned in (24), the appropriate QCD correction factor �B
is identical to C+(�) from (11) in the leading logarithmic approximation.

In the ratio ��=�M the decay constant cancels and the CKM uncertainty is almost
completely removed since ����VcbVcsVtsVtb

����
2

= 1 � 0:03: (48)

At present the accuracy of ��=�M is still rather poor, ��=�M = (5:6 � 2:6) � 10�3. The
breakdown of errors is as follows: �2:3 from varying BS=B between 0:7 and 1:3, +1:1

�0:7 from
varying � between mb=2 and 2mb, �0:4 from mb = 4:8 � 0:2 GeV and �0:4 from mt =
176�9 GeV. The dominant uncertainty is due to BS=B, which has never been studied before.
It is conceivable that a lattice study could actually calculate BS=B more accurately than the
bag parameters themselves, because some systematic uncertainties may be expected to cancel
in the ratio. The quantity ��=�M might thus be calculable rather precisely in the future and
�MBs could then be estimated from the observed ��Bs. In conjunction with �MBd

this would
provide an alternative way of determining the CKM ratio jVts=Vtdj, especially if the latter is
around its largest currently allowed value [2]. The width di�erence, and hence its observability
increases the larger jVtsj � jVcbj becomes. In contrast, the ratio �(B ! K�)=�(B ! f%; !g)
is best suited for extracting small jVts=Vtdj ratios, provided the long distance e�ects can be
su�ciently well understood [33].

These approaches could complement other methods to determine jVtd=Vtsj. Such additional
possibilities would be to relate jVtsj to the accurate jVcbj measurements and to obtain jVtdj
from �MBd

, CKM unitarity constraints [34], and in particular B(K+ ! �+���) [32, 35], which
has the unique advantage of being exceptionally clean from a theoretical point of view.

4 The Bs � Bd Width Di�erence

The ratio of the Bs and Bd meson decay widths �Bs=�Bd
is expected to be very close to

unity [3, 36]. Deviations arise predominantly from SU(3) breaking e�ects in already small
corrections to the leading spectator decay of the bottom quark. In the following we will
discuss the mechanisms that di�erentiate between �Bs and �Bd

and estimate their numerical
importance. The decay rate of Bd, Bs mesons has the general form (q = d, s)

�Bq = �0 + ��(q)
kin + ��(q)

mag + ��(q)
WA: (49)

Here �0 denotes the leading, universal free b-quark decay rate, ��kin is the time dilatation
correction, ��mag the contribution from the chromomagnetic interaction of the heavy quark
spin, and ��WA describes the weak annihilation of �b with q. ��kin and ��mag are of the
order O(1=m2

b) relative to �0 and ��WA enters at order O(1=m3
b). Higher orders have been

neglected in (49). There is no linear correction in 1=mb [3]. Through order O(1=m3
b) one may

thus write
�Bs

�Bd

= 1 +
��(s)

kin ���(d)
kin

�
+

��(s)
mag ���(d)

mag

�
+

��(s)
WA ���(d)

WA

�
: (50)

14



We will now discuss the three di�erent corrections which contribute to �Bs
=�Bd

� 1 in turn.
The �rst two can be related to meson mass di�erences. For this purpose we de�ne

MH =
1

4
(MH + 3MH�); (51)

where MH and MH� are the masses of a pseudoscalar heavy-light meson H (1S0) and of its
vector meson partner H� (3S1). In the weighted average MH the spin splitting contribution
cancels in the HQET mass formula which then takes the form (Q = b, c)

MHq
= mQ + ��q +

h~p2iq
2mQ

+O
 

�3
QCD

m2
Q

!
: (52)

Here h~p2iq is the average momentum squared of the heavy quark inside the meson and ��q may
be viewed as the constituent mass of the light degrees of freedom. Both quantities depend on
the light quark avor q but are independent of the heavy quark mass. Combining (52) for the

cases of Ds, D+, Bs and Bd and recalling that ��
(q)
kin=� = �h~p2iq=(2m2

b) one �nds

��
(s)
kin ���

(d)
kin

�
= � mc=mb

mb �mc

h
MDs �MD+ � (MBs �MBd

)
i
� �(3� 6) � 10�4: (53)

All required meson masses can be obtained from [13], except for MB�

s
. In this case we use the

heavy quark symmetry relation

MB�

s
�MBs =

MD�

s
�MDs

MD�+ �MD+
(MB�

d
�MBd

) = (46� 1) MeV (54)

to �nd MB�

s
= (5421 � 6) MeV. This expectation is in accordance with direct measurements

of the B�
s ! Bs transition, which yield MB�

s
�MBs = (47:0� 2:6) MeV [37]. We see that the

correction in (53) is exceedingly small. This number, however, should probably not be taken
at face value. Given the smallness of the e�ect it is conceivable that terms neglected in (52)
could have an impact on the precise estimate of (53). The typical size of such a correction
would be (here we use �QCD = 0:3 GeV)

������
��(s)

kin ���(d)
kin

�

������ �
mc=mb

mb �mc

"
�3
QCD

m2
c

#
� 12 � 10�4: (55)

At any rate, while (53) might not be a completely accurate estimate of this correction, it

seems safe to conclude that the e�ect on �Bs=�Bd
due to ��

(s)
kin ���

(d)
kin is well below 1% and

thus negligible for all practical purposes.
Next, the chromomagnetic correction ��(q)

mag can be related to the spin splitting in S-wave
B mesons and is proportional to MB�

q
�MBq . Hence we may write

��(s)
mag ���(d)

mag

�
=

��(d)
mag

�

MB�

s
�MBs � (MB�

d
�MBd

)

MB�

d
�MBd

� �(3� 8) � 10�4: (56)

The quantity ��(d)
mag=� is known [3] and can be calculated to be �0:012. Using MB�

d
�MBd

=
(46:0�0:6) MeV [13] and MB�

s
�MBs = (47:0�2:6) MeV [37] one �nds the numerical estimate

quoted in (56). Clearly this e�ect on the Bs �Bd lifetime di�erence is negligible as well.
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Finally, we turn to the corrections due to weak annihilation. These contributions arise
from the annihilation reactions �bs ! �cc and �bd ! �cu in the case of a Bs and a Bd meson,
respectively. Neglecting Cabibbo suppressed modes and penguin contributions they are readily
calculated to beyy

��(s)
WA

�
= 16�2B(B ! Xe�)

f2Bs

m2
b

V 2
cs

p
1 � 4z

g(z) ~�QCD
� (57)

�
�
�(1� z)

�
K1B

(s)
1 +

1

Nc
K2B

(s)
2

�
+ (1 + 2z)

�
K1B

(s)
3 +

1

Nc
K2B

(s)
4

��
;

��
(d)
WA

�
= 16�2B(B ! Xe�)

f2Bd

m2
b

V 2
ud

(1 � z)2
g(z) ~�QCD

� (58)

�
�
�(1 +

z

2
)
�
K1B

(d)
1 +

1

Nc
K2B

(d)
2

�
+ (1 + 2z)

�
K1B

(d)
3 +

1

Nc
K2B

(d)
4

��
:

Here we have again used (28) to eliminate the Vcb dependence. The leading log QCD co-

e�cients K1;2 are de�ned in (15). The bag factors B(q)
i parametrize the following matrix

elements

hBqj(�biqi)V�A(�qjbj)V�AjBqi = f2Bq
m2

bB
(q)
1

hBqj(�biqj)V�A(�qjbi)V�AjBqi =
1

Nc
f2Bq

m2
bB

(q)
2

hBqj(�biqi)S�P (�qjbj)S+P jBqi = f2Bq
m2

bB
(q)
3

hBqj(�biqj)S�P (�qjbi)S+P jBqi =
1

Nc

f2Bq
m2

bB
(q)
4 ; (59)

where we have assumed MBq � mb.

Using the strict factorization estimate B(q)
i � 1 would yield the following result (taking

fBd
� fBs and expanding in z � 0:1)

2
4��(s)

WA ���(d)
WA

�

3
5
fact:

' 24�2B(B ! Xe�)
f2B
m2

b

1� 2z

g(z) ~�QCD
z
�
K1 +

1

Nc
K2

�
: (60)

Note that, in `vacuum insertion', this expression coincides with ��
(d)
WA=� while ��

(s)
WA=� is

twice as large. For our central parameter set, eq. (60) amounts to 2 �10�4. The extreme small-
ness of this number is the result of two e�ects. The �rst is helicity suppression, manifesting
itself in the factor of z = m2

c=m
2
b in (60). Secondly, a further suppression comes from a { some-

what accidental { cancellation between QCD coe�cients in K1 +K2=3 � �0:39+0:42 = 0:03.
It is important to realize that both features are a consequence of the factorization assumption.
Even with small deviations from factorization the factor z(K1 +K2=Nc) would be substituted

yy Our results are in agreement with the expressions recently obtained in [36].
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by a number almost one hundred times larger. To get an idea of the typical order of magnitude,
we approximate (57) and (58) to

��(q)
WA

�
= 16�2B(B ! Xe�)

f2Bq

m2
b

V 2
ud

1 � 2z

g(z) ~�QCD
� (61)

�
�
K1(B

(q)
3 �B(q)

1 ) +
1

Nc
K2(B

(q)
4 �B(q)

2 ) +O(z)
�
;

where we have used
p

1 � 4z � (1 � z)2 � 1 � 2z and neglected small helicity suppressed
contributions proportional to z in the square brackets. Taking �K1 � K2=3 � 0:4 and

jB(q)
3 � B

(q)
1 j; jB(q)

4 � B(q)
4 j < 0:6, the modulus of the term in square brackets is 0:5 or less,

which yields ��
(q)
WA=� � 0:023. Assuming 40% of SU(3) breaking then gives

������
��

(s)
WA ���

(d)
WA

�

������ � 0:9%: (62)

Although with extreme variations, allowing also jK1j and jK2=3j to di�er (for example by
choosing a renormalization scale � di�erent from mb), this di�erence could be up to 2:5%, it
is more likely that the correction (62) will actually be much smaller due to various possible
cancellations in (61) and because 40% is probably an overestimate of the magnitude of SU(3)
breaking. Furthermore, from previous experience with lattice calculations of bag parameters
in the B meson system it seems likely that the B(q)

i will not di�er too dramatically from one,
so that (62), although admittedly somewhat crude, is probably on the safe side.

Summarizing the discussion of the various contributions to (50) we conclude that, most
likely, the ratio of rates of Bs and Bd mesons should di�er from unity by no more than one
percent

������Bs

�Bd

� 1

����� < 1%: (63)

5 Summary

In this paper we have analyzed the theoretical prediction for ��Bs within the framework of the
heavy quark expansion. We have calculated the explicit next-to-leading O(1=mb) corrections
in the operator product expansion for the transition matrix element. In addition to the two
leading dimension-six operators, �ve new operators of dimension seven appear at this level.
The matrix elements of the latter operators were evaluated using factorization, which should
give a fair estimate of these subleading corrections. Their e�ect on ��Bs, formally of order
O(�QCD=mb) and O(ms=mb), turned out to be sizable numerically, causing a 30% reduction
of the leading order prediction.

We performed a numerical investigation of ��Bs with emphasis on theoretical errors, which
are presently dominated by the uncertainties in hadronic matrix elements. These errors are
still rather large and lead to a prediction of (��=�)Bs = 0:16+0:11�0:09. However, a systematic
improvement of this result is possible, in particular by progress in lattice QCD. In the future
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it would be desireable to measure on the lattice the S-P four-fermion operator along with
the V-A operator that has received most attention in the past due to its connection with
the mass di�erence. Eventually an accuracy of 10% for ��Bs

should be feasible when the
next-to-leading analysis of short-distance corrections is also completed.

The e�ects of penguin operators and contributions from CKM suppressed modes have also
been considered. They were shown to give only a few percent relative correction in (��=�)Bs

and are thus negligible in view of the other uncertainties.
We further studied theBs�Bd lifetime di�erence and quanti�ed the expectation �Bs � �Bd

,
estimating j� (Bs)=� (Bd) � 1j < 1%. This result is useful input for experimental analyses of
��Bs.

To put our theoretical analysis into perspective, we have included a short discussion of the
current experimental situation concerning ��Bs

. Using information on � (Bs ! J= �) and
� (Bs) = � (Bd), we have attempted a preliminary extraction of ��Bs, obtaining (��=�)Bs �
0:3� 0:4. This is still inconclusive but can be improved by better statistics in the future. We
have also proposed an alternative route towards a measurement of ��Bs that makes use of
the ��X and/or D�

s �X �nal states in Bs decay, which are expected to be dominantly CP
even. The present experimental information may be complemented by the bound (��=�)Bs �
2B(b! c�cs)Bs � 0:44�0:06. This bound is not very strong, but it has the advantage of being
valid independently of the heavy quark expansion and it is interesting for principal reasons.

In addition we have briey reviewed some phenomenological applications that could be
opened up by further progress on the experimental as well as the theoretical side. These
possibilities include new methods to study CP violation, complementary information on �MBs

in case ��Bs is measured �rst, and alternative constraints on jVtd=Vtsj, especially for small
values of this ratio. Finally, the theory of inclusive B decays itself can be expected to pro�t
from a confrontation of the heavy quark expansion for ��Bs with experiment. In this respect
��Bs provides an important special case that directly probes O(1=m3

b) contributions.
As we have seen, the topic of ��Bs touches upon a rich variety of interesting physics

issues and certainly merits the continued e�orts needed to address the problems that are still
unresolved.
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Appendix A: Penguin Contributions to ��Bs

In the following we discuss the impact of penguin operators on the width di�erence ��Bs. We
will work to leading logarithmic accuracy in QCD and include the charm quark mass e�ects.
For the purpose of this section we shall neglect 1=mb corrections, CKM suppressed modes and
light quark masses.

Taking gluonic penguin operators into account, the e�ective hamiltonian in (10) is gener-
alized to
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Heff =
GFp

2
V �
cbVcs

6X
r=1

CrQr (64)

where

Q1 = (�bisi)V�A(�cjcj)V�A Q2 = (�bisj)V�A(�cjci)V�A (65)

Q3 = (�bisi)V�A(�qjqj)V�A Q4 = (�bisj)V�A(�qjqi)V�A (66)

Q5 = (�bisi)V�A(�qjqj)V+A Q6 = (�bisj)V�A(�qjqi)V+A: (67)

A summation over q = u, d, s, c is implied. C1; : : : ; C6 are the corresponding Wilson coe�cient
functions. C1;2 have already been given in (11). For a recent review of this subject see [32],
where further details may be found. Using our standard parameter set with � = mb the
numerical values are

(C1; : : : ; C6) = (�0:272; 1:120; 0:012;�0:028; 0:008;�0:035): (68)

The calculation of the transition operator (9) using the extended operator basis is straight-
forward and leads to

�
��

�

�
Bs

= 16�2B(Bs ! Xe�)
f2Bs

MBs

m3
b

V 2
cs

g(z) ~�QCD

(p
1 � 4z �

�
�
(2(1 � z)(K1 +K 0

1 +K 00
1 ) + (1 � 4z)(K2 +K 0

2 +K 00
2 ) + 6z(K 0

3 +K 00
3 ))

�
1 +

1

Nc

�
B+

+ (1 + 2z)(K2 +K 0
2 +K 00

2 �K1 �K 0
1 �K 00

1 )
M2

Bs

(mb +ms)2

�
2� 1

Nc

�
BS

#
+

+3

"
(2K 00

1 +K 00
2 )
�

1 +
1

Nc

�
B + (K 00

2 �K 00
1 )

M2
Bs

(mb +ms)2

�
2� 1

Nc

�
BS

#)
: (69)

K1;2 are de�ned in (15) and the remaining coe�cients read

K 0
1 = 2(NcC1C3 + C1C4 + C2C3) K 0

2 = 2C2C4 (70)

K 0
3 = 2(NcC1C5 + C1C6 + C2C5 + C2C6); (71)

K 00
1 = NcC

2
3 +NcC

2
5 + 2C3C4 + 2C5C6 K 00

2 = C2
4 + C2

6 (72)

K 00
3 = 2(NcC3C5 + C3C6 + C4C5 + C4C6): (73)

These expressions represent the interference of penguin operators with the leading operators
Q1;2 (coe�cients K 0

i) and penguin-penguin contributions (coe�cients K 00
i ). Numerically they

reduce (��=�)Bs by 0.0114, which is about 5% of the result without penguins (��=�)Bs =
0:221, neglecting 1=mb corrections. Note that since C3; : : : ; C6 are small, the e�ect of penguins
is dominated by the K 0

i, while the K 00
i are negligible.
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Appendix B: Cabibbo-suppressed Contributions to ��Bs

In this appendix we briey consider the CKM suppressed contributions to ��Bs
. They arise

from u�c (�uc) or u�u intermediate states in the diagram of Fig. 1. For our estimate we include
again QCD corrections in the leading logarithmic approximation and keep charm quark mass
e�ects. We neglect 1=mb corrections and the small impact of penguin operators in the u�u
channel.

The contribution from u�c and �uc intermediate states is then found to be

�
��

�

�
Bs;uc

= 16�2B(Bs ! Xe�)
(1� z)2
g(z) ~�QCD

f2Bs
MBs

m3
b

V 2
cs � 2 Re

�u
�c
�

�
�
((2 + z)K1 + (1� z)K2)

�
1 +

1

Nc

�
B + (1 + 2z) (K2 �K1)

�
2� 1

Nc

�
BS

�
; (74)

where �i = V �
ibVis. Compared to the leading, CKM allowed contribution with two charm

quarks in the intermediate state, expression (74) is suppressed by a factor

2 Re
�u
�c

= 2�2% � �3% (75)

Here we have used the Wolfenstein parametrization and the result that % is restricted by
j%j < 0:3 in the standard model [32]. Since the di�erence between (74) and the CKM allowed
contribution (see (30)) due to the di�erent charm quark mass dependences turns out to be
negligible numerically, relation (75) determines essentially the relative importance of (74) for
(��=�)Bs. Note that the sign of (74) is not yet �xed because both positive and negative
values are still allowed for %. Since % could be close to zero, the CKM suppressed contribution
(74) might also be well below the 3% given above. In any case, it can be safely neglected.

The contribution with two internal up quarks can be obtained from (74) by replacing
2 Re (�u=�c) ! Re (�u=�c)2 and setting z ! 0 everywhere except in the argument of g(z).
Since jRe (�u=�c)2j can be estimated to be smaller than 4 � 10�4, the resulting expression is
still much more suppressed than (74) and therefore completely irrelevant.

Appendix C: Comment on �B+=�Bd
Some of the issues in the calculation of lifetime di�erences among Bs and Bd mesons that we
have discussed in this paper are also relevant for the prediction of �B+=�Bd

. We will therefore
take the opportunity to also have a brief look at the question of the B+�Bd lifetime di�erence.
In the literature this quantity has been estimated to be [3]

�B+

�Bd

' 1 + 0:05 � f2B
(200 MeV)2

; (76)

predicting the B+ lifetime to exceed �Bd
by several percent. In the following we would like

to re-examine this estimate, emphasizing the theoretical uncertainties that are involved in its
derivation. Assuming isospin symmetry, the mechanisms that produce a di�erence in �B+ and
�Bd

�rst enter at the level of dimension six operators, or equivalently at O(1=m3
b ), in the heavy
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quark expansion [3]. These e�ects are weak annihilation for the Bd and Pauli interference in
the case of B+. As we have seen in section 4, the weak annihilation contribution to �Bd

is
very small and we shall neglect it. In this approximation the di�erence between �B+ and �Bd

arises only through Pauli interference and one may write

�B+

�Bd

= 1 + 24�2B(B ! Xe�)
f2B
m2

b

V 2
ud

(1� z)2
g(z) ~�QCD

�
(C2

� � C2
+)B(u)

1 �
1

Nc

(C2
+ + C2

�)B(u)
2

�
; (77)

where

hB+j(�biui)V�A(�ujbj)V�AjB+i = f2Bm
2
bB

(u)
1

hB+j(�biuj)V�A(�ujbi)V�AjB+i =
1

Nc
f2Bm

2
bB

(u)
2 (78)

de�ne the bag parameters B
(u)
1;2 . The Wilson coe�cients C� have been given in (11).

With mb = 4:8 GeV, mc = 1:4 GeV, �LO = 0:2 GeV and taking B
(u)
1;2 = 1, fB = 0:2 GeV,

one �nds �B+=�Bd
= 1:02, indicating a slightly longer lifetime for B+ than for Bd. This

number can however not be viewed as a very accurate prediction. In fact, the two contribu-
tions proportional to B(u)

1 and B
(u)
2 in (77) enter with di�erent sign. This leads to a partial

cancellation that has the tendency to make the result unstable. For instance, allowing the
unphysical scale � = O(mb) in the coe�cients C� to vary from mb=2 to 2mb gives a range
of 1:00 � 1:06 for the B+ to Bd lifetime ratio. Switching o� short distance QCD corrections
completely (C� ! 1), the hierarchy of lifetimes would even be reversed to �B+=�Bd

= 0:95,
which is another aspect of the large sensitivity to QCD e�ects. An alternative way of esti-
mating the present uncertainty is to allow a variation in the bag parameters (keeping � = mb

�xed). A range of B(u)
1;2 = 1:0�0:3 is certainly conceivable, considering the uncertainties in the

nonperturbative dynamics and from the scale and scheme dependence in the long-distance to
short-distance matching. Assuming this, we obtain for fB = 0:2 GeV, �B+=�Bd

= 1:02 � 0:04.
A combination of both variations, of scale and bag parameters, would even allow us to obtain
a lifetime di�erence of up to 20%, �B+=�Bd

� 1:2. Although we consider this case highly un-
likely the point to note is that a lifetime that large could be tolerated by QCD as well as equal
lifetimes, or even a marginally shorter lifetime for the B+. A decisive improvement of this
situation could only be achieved by a reliable lattice calculation of B

(u)
1;2 in conjunction with

a next-to-leading order computation of short-distance QCD corrections to ensure a proper
matching in renormalization scheme and scale between Wilson coe�cients and hadronic ma-
trix elements. Alternatively one could use the present measurement �B+=�Bd

= 1:06 � 0:04
[26] to constrain the bag parameters. At present such constraints appear to be of limited use,
because of the large renormalization scale dependence of Pauli interference at leading order.
Similar conclusions have been reached in the recent paper by Neubert and Sachrajda [36].

The authors of [3] have modeled the bag parameters in their estimate of �B+=�Bd
by

factorizing at a low scale �h < mb and explicitly including the leading logarithms of HQET.
This yields

B
(u)
1 (mb) =

8

9

"
�s(mb)

�s(�h)

#�3=50
+

1

9

"
�s(mb)

�s(�h)

#12=25
B

(u)
2 (mb) =

"
�s(mb)

�s(�h)

#12=25
: (79)
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Taking �h = 1 GeV this gives B
(u)
1 (mb) = 1:01, B

(u)
2 (mb) = 0:72 and �B+=�Bd

= 1:04 (for
fB = 0:2 GeV), favoring �B+ > �Bd

. However, as discussed at the end of section 2, the
quantitative reliability of an estimate based on hybrid logarithms is not entirely clear.
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